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1. Summary 
 
Bayesian networks are a mature statistical model with a number of traditional implementations.  
However, there are no open-source implementations of graphical model inference and learning 
that take advantage of distributed hardware in a transparent fashion. Such graphical model 
inference and learning capabilities are currently being built ad-hoc to suit a particular 
application-hardware combination. 
 
The project aimed at building a massively parallel library for Bayesian networks to create a data 
analytical capability with potential throughput commensurate with DoD data volumes.  Our goal 
was to implement data-parallel independent and identically distributed (i.i.d.) inference and 
learning in Bayesian networks and accomplish nearly-linear scaling.  We proposed to reexamine 
and efficiently implement data structures and algorithms needed for distributed-model inference.  
The inference aimed at being able to ask and answer privacy and adversarial learning questions 
where model distribution is due to private nature of the data.  We looked for efficiently-
parallelizable methods of inference and learning, where graphical models are defined over 
arbitrary large graphs such as social networks but parameters are possibly tied across long 
distances in the graph. 
 

2. Introduction 
 

There are three classes of challenges in bringing Bayesian network algorithms into the massively 
parallel world, each of which necessitates a different approach. 

1. Instance-parallelizable algorithms, where multiple working instances of existing algorithms 
process independent instance of data in parallel, come with the lowest technical risk and are 
addressed by a more or less direct application of MapReduce and related paradigms. 

2. The case where a problem instance with data cannot, for technical or privacy reasons, be 
brought into memory in its entirety.  This case requires new research to create robust versions 
of well-known fundamental graphical model data structures that remain cohesive when 
spanning over multiple computing nodes.  The algorithms and data structures are not new in 
principle, but they include hidden assumptions that are harmless in the single-threaded case.  
Extending the representations and algorithms to support parallelism requires a thorough 
examination of the algorithms and the data structures. 

3. Dealing with social graph-based information, we face a relational learning paradigm where 
data is not organized into instances, but instead statistical commonalities arise between areas 
of the graph.  This is a developing area and both conceptual research and careful 
implementation are needed. 
 

Our approach was to build on top of and integrate existing technology where it exists and is 
appropriate, for example, Spark for iterative algorithms, GraphLab for graph-structured 
computations. 
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The library aimed to be integrated into popular big-data analytical software like Hive to lower 
developer friction, leveraging both the data access primitives in Hive and BayesDB, and the 
interaction languages. 
 

3. Methods, Assumptions, and Procedures 

3.1 SMILE-WIDE v1.0 
 

While the long term goal has included design and implementation of a new, open source, Java-
based library for inference and learning in Bayesian networks (our steps to this effect are 
described later in the report), we started the project based on SMILE, the existing 
implementation of the software developed by the Decision Systems Laboratory, University of 
Pittsburgh. We have utilized the jSMILE library as the foundation for parallel inference with 
i.i.d. data in order to establish performance baselines.  This way, we were able to perform 
parallelization experiments while pursuing the design and implementation efforts for the ultimate 
goal. 
 
We called the library based on jSMILE, SMILE-WIDE 1.0.  We tested the code with Boeing’s 
mini-cluster and then transferred to the XNET integration environment.  We established a build 
process for the library .jars on XNET and exposed the library API as a standard .jar library.  The 
API is similar to the jSMILE interface, but it is extended so that the potentially long-running 
calls are being translated into Hadoop jobs.  The deployment and functionality test of the initial 
version of the library on XNET was successful, including the native SMILE binary. 
 

3.2 Performance Test with Facebook Dataset 
 
We conducted scale-up testing of the parallel inference code on the XNET cluster using the 
Facebook Users dataset.  The task for this data set was to predict age group from other attributes 
of the Facebook sub dataset.  We tested the prototype for parallel inference speedup achievable 
on the XNET cluster.  It parsed the Facebook dataset and distributed computation to all available 
nodes.  From small-scale testing on Boeings mini-cluster it appeared that the speedups were 
nearly linear (optimal), as expected for i.i.d. inference.  In the test on the XNET cluster, there 
were 37 16-core nodes, 592 CPUs, 446 mapper compute threads.  Again, the speedups were 
nearly linear until the jobs setup overhead dominated runtime. 
 
The result is shown in the chart below. 
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Figure 1: Runtimes and Speedups for Parallel Bayesian Network Inference 

 
Generally, the runtime reduces and the speedup increases when the number of mappers increases 
for parallel Bayesian network inference.  For example, when there are 17 mapper threads, the 
scale-up slope shows 15 times of increase rate compared with single mapper thread.  However, 
when the number of mappers reaches 432, the job setup overhead, which is about 45 seconds, 
dominates runtime.  The performance decreases when the number of mappers is greater than 432 
as the Mappers start to queue and there is a delay in processing the queued jobs.  For example, 
when there are 648 mapper threads, the scale-up slope showed only 41 times increase of 
speedups for parallel Bayesian network inference. 
 
 

3.3 Hive UDFs 
 
Originally defining an inference process on top of a dataset means writing/changing ~200 lines 
of code against our library.  Much of this is unavoidable as it is the input dataset parser, but some 
could be generalized and simplified, especially data munging.  We explored, with other XDATA 
API groups, common ways of processing data across XDATA framework such as normalizing 
text inputs, discretizing continuous attributes, etc.  The data access drives most of the 
programming complexity/effort for the app developer against our library.  As a result, we 
incorporated data access models by exposing the functionality as a set of Hive UDFs (user-
defined functions), which allows tight integration of the library with Hive data warehouse for 
other jobs such as Hive data mining. 
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3.4 Structure Learning and the EM algorithm 
 
Continuing to develop the initial version of the library, we have added the structure learning 
components, as well as parallel cross-validation (evaluation routine).  We also used the XNET 
cluster to research the distribution of Bayesian network structure scores and the connection 
between the scores and actual predictive performance.  We redesigned the Expectation-
Maximization (EM) algorithm so that it relies in its crucial step on a general-purpose “counting 
class” – the collection of expected counts of arbitrary subsets of attributes.  These correspond to 
Bayesian network “families.”  The EM algorithm allows us to learn from incomplete data at 
scale and to implement algorithms like probabilistic clustering. 
 
We performed experiments with the parallelized version of the EM algorithm on the XDATA 
cluster on a data set containing 500,000 records.  We were interested in the relationship between 
the number of Mappers and the time required by the EM algorithm to converge.  The plot below 
shows this relationship, 
 

 
Figure 2: Execution time as a function of the number of Mappers 

 
We can observe that there is a dramatic speedup due to parallel execution of the EM algorithm 
but only up to a certain point.  We believe that the overhead related to setting up and 
coordinating the Map-Reduce jobs and, in particular data transfer between Mappers and 
Reducers, outweighs the computational gains.  At the time of our experiments, the XDATA 
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cluster could allocate up to 444 Mappers.  This is a critical point, as our algorithm spends most 
of its time in the Map phase, which generates sufficient statistics.  The number of Reducers 
requested by the algorithm is equal to the number of nodes, which in our network was less than 
20.  The key to achieving effective speedup was the use of the Combiner class.  The Combiner 
class is used by the Map-Reduce framework to perform local aggregation of the intermediate 
outputs, which helps to cut down the amount of data transferred from the Mappers to the 
Reducers. 
 
A next step would be to conduct experiments using Spark. 
 
 

3.5 Analysis of the Kiva Dataset 
 
Our practical data analytic work was mostly with the Kiva dataset.  The Bitcoin and Akamai data 
sets are deeply graph-structured and are thus not a natural fit for what is essentially a 
probabilistic model making i.i.d. assumptions and would require heavy feature engineering. 
 
We parsed the Kiva data set and mapped its values onto outcomes of random variables.  Then we 
deployed Bayesian structure search algorithms to find a Bayesian network that best describes the 
dataset.  During the summer workshop, we applied SMILE-WIDE to the Kiva dataset, exercising 
Bayesian network structure learning algorithms and probabilistic clustering through learning a 
latent variable graphical model, using the distributed EM capability. 
 
The structures learned from the data validated common-sense, notably that geographical 
variables are closely related, partners operate in distinct countries, currency correlates with 
country, delinquency is strongly country-dependent, loan amounts (terms/funded/paid) are 
closely correlated, and amounts co-vary with sector. 
 

 
Figure 3: Learned Bayesian Network  
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The learned Bayesian network structure (above) allows for answering many queries of interest to 
analysts.  We have found when asking various queries that when the number of borrowers is 
between 3 and 5, they are almost twice as likely to default as when the number of borrowers is 1 
or 2.  We have found that loans with the number of borrowers larger than 5 rarely default.  
Defaulting loans are likely to involve small amounts of money. 
 
 

3.6 Algorithms Research 
 
In parallel with exploring instance-parallelizable algorithms, we started research on truly parallel 
learning algorithms in order to make contributions to parallelizing both the Bayesian search and 
the constraint-based search approach.  Some avenues for this work were through the idea of 
random forests and Random Naive Bayes ensemble learning.  Our goal was to create a 
MapReduce Bayesian network learning ensemble algorithm for classification purposes.  We 
intended to apply bootstrapping and random feature selection to construct a forest of classifiers 
with varying network complexity ranging from Naive Bayes, Tree Augmented Naive Bayes, 
Augmented Bayes, to full blown Bayesian network learning without restrictions on network 
structure.  Part of this work was focused on determining the optimal way of combining the 
output of the individual classifiers (Bayesian Model Averaging vs. Bayesian Model Combining 
vs. possible novel approaches). 
 
We investigated the question whether a massive amount of computation is capable of improving 
the results of learning algorithms.  In the Bayesian Search approach, instance-based parallelism 
is fairly straightforward to achieve by distributing algorithm restarts among Mappers.  It turns 
out that with massively many restarts, the score of the identified structure increases and so does 
classification accuracy.  The following two plots show histograms of structure scores (upper 
plot) and classification accuracy (lower plot).  Massive amount of computation allows for finding 
structures that are outliers in the sense of being in the right-hand tail of the distribution and 
having scores that are significantly higher than the average. 
 

Approved for Public Release; Distribution Unlimited. 
6 



 
Figure 4: Histograms of structure scores (upper) and classification accuracy (lower) 

 
We also investigated the relationship between structure score and classification accuracy 
(below). 
 

 
 Figure 5:  Relationship between structure score and classification accuracy 

 
It turns out that while the relationship is not strong, higher scores, achieved by massive amounts 
of computation, are correlated with higher accuracy. 
 
Finally, we studied an important parameter of the search algorithm, notably the average node 
degree, which is the sum of in-degree and out-degree or the total number of arcs through which 
the node is connected to the rest of the network.  We plot below the relationships between node 
degree and structure score (upper plot) and classification accuracy (lower plot). 
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Figure 6: Relationships between node degree and structure score (upper) and 

classification accuracy (lower) 

 
It is clear that both cases we are dealing with positive relationships, which justifies 
computational effort spent on massively parallel search. 
 
 
The SMILE-WIDE 1.0 library includes four general Map-Reduce Bayesian network structure 
learning algorithms.  They are: Two different MapReduce versions of the PC algorithm, a 
MapReduce version of the Bayesian Search algorithm, and a version of the Three-Phase 
Dependency Analysis algorithm. 
 
A next step would be to improve algorithm efficiency.  We were considering algorithm 
modifications that allow for reduction of the number of required MapReduce jobs, the number of 
messages that need to be communicated between Mappers and Reducers, and the memory usage 
of Mappers and Reducers.  All these seem to be the current bottlenecks of the implemented 
algorithms.  Assuming that the search performed on a single processor has sufficient memory 
available, it outperforms the Hadoop implementation. 
 
For instance, the exponential nature of the number of required independence tests of the PC 
algorithm, potentially causes problems with the number of mapper messages (Key-Value Pairs, 
(KVPs)) sent by mapper process in our completely distributed independence test code.  
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Figure 7:  Key-Value Pairs vs Columns in the Dataset 

 
The number of messages that will be passed by the mappers can be curbed by reducing the 
number parent nodes (for Bayesian search based algorithms) or the number of conditioning 
variables (for constraint-based search based approaches), but the number will still quickly 
become unacceptable to the point that Hadoop clusters do not have sufficient temporary storage 
to complete the map phase of the algorithm. 
 

3.7 Results and Discussion 
 
We have set out to design and develop SMILE-WIDE, an open source Java library for Bayesian 
network inference and learning as the main part of the project.  At the end of October 2013, we 
had the design and a partial implementation of the library.  We have implemented the structural 
part for representing discrete Bayesian networks and XML-based input-output, which is 
compatible with SMILE file format (.XDSL).  The library is accompanied by unit tests.  The 
project is a self-contained Maven project and all dependencies are resolved from public 
repositories. 
 
Library documentation is created using Javadoc, which allows for automatic generation of 
manual pages.  The source code and documents are cleaned up for generality and robustness.  
They are checked into Git repository.  Recently project web site was moved to Github too. 
 
Git repository: https://github.com/SmileWide/main 
Github wiki site: http://smilewide.github.io/main 
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4. Conclusions / Recommendations 
 

We implemented a basic version of SMILE-WIDE library and tested it for instance-parallelizable 
algorithms for both inference and learning of Bayesian networks. The test results showed the 
parallel algorithms can greatly speedup the execution time but only up to certain limit. The 
overhead of distribution of jobs between Mappers and Reducers, the communication load by the 
number of messages needed to exchange between Mappers and Reducers, and memory usage of 
Mappers and Reducers, seem to be the bottleneck. We believe computation efficiency can be 
further improved with these issues addressed for parallel algorithms and implementations.  
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5. List of  Acronyms 
 

i.i.d – independent and identically distributed 

API – application programming interface 

CPU – central processing unit 

DARPA – Defense Advanced Research Projects Agency 

DoD - Department of Defense 

EM – Expectation Maximization 

KVP – key value pairs 

PC – Peter and Clark(authors of the algorithm) 

SMILE - Structural Modeling, Inference, and Learning Engine 

SMILE-WIDE - Structural Modeling, Inference, and Learning Engine - With Integrated 
Distributed Execution 

UDF – user-defined functions 

XML – eXtensible Markup Language 
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